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Abstract
The popular explanation of lift is common, quick, sounds logical and gives
the correct answer, yet also introduces misconceptions, uses a nonsensical
physical argument and misleadingly invokes Bernoulli’s equation. A simple
analysis of pressure gradients and the curvature of streamlines is presented
here to give a more correct explanation of lift.

M This article features online multimedia enhancements

The science behind aeronautics continues to
fascinate and many students are attracted to
engineering as a result of an early interest in
aircraft. The most commonly asked question is
how a wing can produce lift. Unfortunately the
most widely used explanation of lift is wrong in a
number of key points. Not only is this confusing
for students, but in the worst case it can lead
to a fundamental misunderstanding of some of
the most important aerodynamic principles. In
this article I will demonstrate why the popular
explanation for lift is wrong and then propose an
alternative explanation.

The popular explanation
Figure 1 shows a typical aerofoil—the cross-
sectional shape of a wing—immersed in a flow
where the streamlines have been visualized with
smoke particles. At the front is the stagnation point
(S), which is the location where the oncoming flow
divides into that moving above and that moving
below the wing. The argument revolves around
the observation that the distance from this point
S to the trailing edge (T) is greater along the
upper surface than along the lower surface. If it
is assumed that two neighbouring fluid particles
which ‘split’ at S should meet again at T then
this requires that the average velocity on the upper
surface is greater than that on the lower surface.

Now Bernoulli’s equation is quoted, which
states that larger velocities imply lower pressures

 

S
T 

Figure 1. Streamlines around an aerofoil section
visualized with smoke.

Blow along upper surface of paper

Paper

Figure 2. Paper lifts when air is blown along its upper
surface.

and thus a net upwards pressure force is generated.
Bernoulli’s equation is often demonstrated by
blowing over a piece of paper held between both
hands as demonstrated in figure 2. As air is blown
along the upper surface of the sheet of paper it rises
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Figure 3. Flow along the cross section of a sail.

and, it is said, this is because the average velocity
on the upper surface is greater (caused by blowing)
than on the lower surface (where the air is more
or less at rest). According to Bernoulli’s equation
this should mean that the pressure must be lower
above the paper, causing lift.

The above explanation is extremely wide-
spread. It can be found in many textbooks and,
to my knowledge, it is also used in the RAF’s
instruction manuals. The problem is that, while
it does contain a grain of truth, it is incorrect in a
number of key places.

What’s wrong with the ‘popular’
explanation?
The distance argument

While the aerofoil of figure 1 does indeed exhibit a
greater distance between S and T along the upper
surface, this is not a necessary condition for lift
production. For example, consider a sail that is
nothing but a vertical wing (generating side-force
to propel a yacht). Figure 3 shows the cross
section of a sail schematically and it is obvious
that the distance between the stagnation point and
the trailing edge is more or less the same on both
sides. This becomes exactly true in the absence of
a mast—and clearly the presence of the mast is of
no consequence in the generation of lift. Thus,
the generation of lift does not require different
distances around the upper and lower surfaces.

 
(a) (b) (c)

Figure 4. Smoke particles flowing along a lifting aerofoil section.

M An MPEG movie of this figure is available from stacks.iop.org/physed/38/497

The ‘equal time’ argument

It is often asked why fluid particles should meet
up again at the trailing edge. Or, in other words,
why should two particles on either side of the wing
take the same time to travel from S to T? There is
no obvious explanation and real-life observations
prove that this is wrong. Figure 4 shows a selection
of still frames from a video recording of a smoke-
wind-tunnel experiment (the video clip is available
in the online journal). Here, smoke particles
are injected simultaneously upstream of a lifting
aerofoil section, generating a line of smoke as seen
in figure 4(a). This line of smoke moves with
the flow, dividing into particles travelling above
and below the aerofoil. By the time the smoke
has passed the aerofoil (figure 4(c)) the particles
moving along the upper surface are clearly ahead
of those travelling along the lower surface. They
do not meet up at the trailing edge. When lift
is generated, fluid particles travelling along the
upper surface reach the trailing edge before those
travelling along the lower surface1.

The Bernoulli demonstration

Blowing over a piece of paper does not
demonstrate Bernoulli’s equation. While it is true
that a curved paper lifts when flow is applied
on one side, this is not because air is moving at
different speeds on the two sides. This can easily
be demonstrated by blowing along one side of a
straight piece of paper as sketched in figure 5. In
this case the paper does not experience a force
towards the side subjected to the faster moving
air. The pressure on both sides of the paper is the

1 In fact, it can be proved theoretically that if the particles on
the upper surface reach the trailing edge at the same time as
those travelling along the lower surface no lift is produced.
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Paper (hanging vertically)

Blow air along one side

Figure 5. A straight piece of paper hanging vertically
doesn’t move when air is blown along one side.

same, despite the obvious difference in velocity.
It is false to make a connection between the flow
on the two sides of the paper using Bernoulli’s
equation.

An alternative explanation for lift
The above argument has remained popular because
it is quick, sounds logical and gives the correct
answer. However, my concern about using this
explanation is that it introduces misconceptions
about why aerofoil shapes generate lift, it
uses a nonsensical physical argument and it
often includes an erroneous ‘demonstration’ of
Bernoulli’s equation.

Before we begin—some basic assumptions

The key to understanding fluid flow around an
object is to examine the forces acting on individual
fluid particles and apply Newton’s laws of motion.
While there are many different types of forces
acting on a fluid particle it is possible to neglect
most of these, such as surface tension and gravity.
In fact, for most practical flows the only relevant
forces are due to pressure and friction. As a first
step, we can also assume that there are no friction
forces at work either. This is because in most
flows friction is only significant in a very small
region close to solid surfaces (the boundary layer).
Elsewhere, friction forces are negligible.

We shall also assume the flow to be steady.
In practice this means that we only consider
situations where the overall flowfield does not
change very quickly with time.

With these assumption we can now derive the
rules governing fluid motion by considering the
resultant pressure force acting on an individual
fluid particle and applying Newton’s second law,
which states that force causes acceleration. As we

v
Streamline

l

Fluid particle

Figure 6. Fluid particle travelling along a straight line.

shall see, a force acting in the flow direction causes
fluid particles to change their speed whereas a
force acting normal to the flow direction causes
streamline curvature (by ‘particle’ we refer to a
very small but finite volume (or element) of the
fluid, not individual molecules).

The ‘truth’ about Bernoulli

Imagine a fluid particle travelling along a straight
line (but not at constant velocity) as shown
schematically in figure 6. Let the x-direction
be in the direction of motion. If the particle is
in a region of varying pressure (a non-vanishing
pressure gradient in the x-direction) and if the
particle has a finite size l, then the front of the
particle will be ‘seeing’ a different pressure from
the rear. More precisely, if the pressure drops in
the x-direction (dp/dx < 0) the pressure at the
rear is higher than at the front and the particle
experiences a (positive) net force. According
to Newton’s second law, this force causes an
acceleration and the particle’s velocity increases
as it moves along the streamline. Conversely, if
the pressure increases in the direction of the flow,
the particle decelerates. This means that if the
pressure drops along a streamline, the velocity
increases and vice versa. Bernoulli’s equation
describes this mathematically (see the complete
derivation in the appendix).

However, the fact is often overlooked that
Bernoulli’s equation applies only along a stream-
line. There is no explicit relationship between the
pressure and velocity of neighbouring streamlines.
Sometimes, all streamlines in a flow originate
from a region where there is uniform velocity
and pressure (such as a reservoir or a uniform
free-stream) and in such a case it is possible to
apply Bernoulli’s equation throughout the flow.
But in the ‘demonstration’ of Bernoulli’s equation
shown in figure 2 the air moving along the upper
surface of the paper originates from the mouth
of the person performing the experiment and the
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Figure 7. Fluid particle travelling along a curved
streamline.

streamlines can be traced right back into this
person’s lungs. There is no connection with the
‘streamlines’ underneath the paper and Bernoulli’s
equation cannot be applied to compare the pressure
in the two regions2. In fact, the pressure in the
air blown out of the lungs is equal to that of the
surrounding air (and this is proved when blowing
over a straight sheet of paper—it doesn’t deflect
towards the moving air).

Flow along curved streamlines

Next, examine a particle moving along a curved
streamline as shown in figure 7. For simplicity we
can assume that the particle’s speed is constant3.
Because the particle is changing direction there
must exist a centripetal force acting normal to
the direction of motion. This force can only be
generated by pressure differences (all other forces
are ignored), which implies that the pressure on
one side of the particle is greater than that on
the other. In other words, if a streamline is
curved, there must be a pressure gradient across
the streamline, with the pressure increasing in the
direction away from the centre of curvature.

This relationship (derived mathematically in
the appendix) between pressure fields and flow
curvature is very useful for the understanding of
fluid dynamics (although it doesn’t have a name).
Together with Bernoulli’s equation, it describes
the relationship between the pressure field and the
flow velocity field. A good demonstration of this

2 One might argue that the air blown over the top surface
does eventually come to rest in the room and at that stage
a connecting ‘streamline’ might be drawn towards the lower
surface. However, in this case the flow is clearly affected by
friction—this is what brings the flow to rest—and Bernoulli’s
equation only describes frictionless flows.
3 This in turn implies, according to Bernoulli’s equation, that
the pressure along the streamline is constant (dp/dx = 0).

Concentric
streamlines
in a vortex
(or tornado)

Pressure drops
towards centre

Figure 8. Pressure gradient across streamlines in a
vortex.

Figure 9. Streamlines around a lifting curved plate
‘aerofoil’.

is a tornado (or any vortex, such as that seen in
a bathtub). As sketched in figure 8, an idealized
vortex consists of concentric circles of streamlines.
The above relationship implies that there is a
pressure gradient across these streamlines, with
the pressure dropping as we approach the core.
This explains why there are such low pressures in
the centre of vortices (and why tornados ‘suck’
objects into the sky). In a real, three-dimensional,
tornado, the streamlines are not circles but spirals
which originate from somewhere far away where
the air is at rest and at atmospheric pressure.
Applying Bernoulli’s equation to each of these
streamlines shows that the velocities increase the
closer we get to the vortex core (which is what we
observe in nature)4.

4 At the very centre, the assumption of frictionless flow is no
longer justified (because streamlines in opposite directions get
very close to each other, creating a strong shear flow) and the
above arguments no longer hold (the ‘eye’ of the storm has low
flow velocities and low pressure).
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Figure 10. Simulated streamlines around thin and
thick aerofoils.

Lift on aerofoils

Now we can return to the original problem.
Figure 9 shows a schematic sketch of the
streamlines around the simplest lifting aerofoil—
a curved plate. Far away the air is undisturbed
by the presence of the wing, the pressure is
atmospheric (= patm) and the streamlines are
straight and horizontal. Now consider moving
along a line from point A towards the surface,
keeping on a path that is always perpendicular to
the local streamline direction. Starting at A we
note that the streamlines are straight and parallel
and therefore there is no pressure gradient in the
direction of the dashed line. However, closer
to the aerofoil streamlines become increasingly
curved and there must now be a pressure gradient
across the streamlines. From the direction of
curvature we note that the pressure drops as we
move downwards. By the time we reach the
aerofoil surface at B the pressure is noticeably
lower than that at A (pB < patm). In the same
way we can imagine moving from C to D. Again,
as we approach the aerofoil streamlines exhibit
more and more curvature but this time the pressure
increases towards the surface. At D the pressure
is therefore greater than that at C (pD > patm).
Hence pB < pD and this generates a resultant

(a)

(b)

(c)

Figure 11. Streamlines around a symmetrical aerofoil
at various angles of attack. (a) Positive angle of attack:
lift points up. (b) Zero angle of attack: no lift.
(c) Negative angle of attack: lift points down.

pressure force on the aerofoil, acting upwards, i.e.
lift.

From the above we learn that any shape
that introduces curvature into the flowfield can
generate lift. Aerofoils work because the flow
follows the local surface curvature on the upper
and lower surfaces. It is not necessary to consider
frictional forces to explain lift, however; it is only
due to the action of friction that streamlines take
up the pattern we would intuitively expect, so
strictly speaking lift would not be possible without
friction.

November 2003 P H Y S I C S E D U C A T I O N 501



H Babinsky

 
(a) low angle of attack (b) high angle of attack (c) stalled flow

Figure 12. Streamlines around an aerofoil at increasing angle of attack.

Some observations resulting from this
explanation

Following this line of argument it is possible to
make some interesting observations. For example,
consider the difference between the streamlines
over a thin and a thick aerofoil as shown
schematically in figure 10 (determined from a
computer simulation). Despite the difference in
thickness, both have similar flow patterns above
the upper surface. However, there is considerable
difference in the flow underneath. On the thin
aerofoil the amount of flow curvature below the
wing is comparable to that above it and we might
conclude that the overpressure on the underside is
just as large as the suction on the upper surface—
the two sides contribute almost equally to the
lift. In the case of the thick aerofoil, however,
there are regions of different senses of curvature
below the lower surface. This suggests that there
will be areas with suction as well as areas with
overpressure. In this case the lower surface does
not contribute much resultant force and we can
conclude that thin aerofoils are better at generating
lift. This is generally true, and birds tend to have
thin curved wings. Aircraft do not, because of the
structural difficulties of making thin wings, and
also because the volume contained in the wing is
useful, e.g. for fuel storage.

A frequent question is how aircraft manage to
fly upside down. To demonstrate this, figure 11
shows the streamlines over a symmetrical aerofoil
at positive, zero and negative angles of attack.
Just by judging the degree of flow curvature
above and below the wing it can be seen that
this aerofoil produces positive, zero and negative
lift respectively. Negative lift (which would
be required for flying upside down) is simply
a question of the angle of attack at which the
aircraft flies. Even non-symmetrical aerofoils can

generate negative lift, but they do require more
severe negative angles of attack (because they still
produce positive lift at zero angle of attack) which
makes them less suitable for flying upside down.

This also demonstrates the significance of
angle of attack, as seen again in figure 12. As
the angle of attack of a wing increases, more flow
curvature is introduced above the wing—compare
(b) with (a)—and more lift is generated. However,
at some point the flow is no longer capable of
following the sharp curvature near the nose and
it ‘separates’ from the surface. As a result the
amount of streamline curvature above the wing
has reduced considerably (see figure 12(c)), which
causes a sharp drop-off in lift force. Unfortunately
the process of flow detaching from the surface
often happens instantaneously when the angle of
attack is increased, making the loss of lift rather
sudden and dangerous—this is called stall.

Conclusion
In this article I have attempted to give a ‘hands-on’
and correct explanation for Bernoulli’s equation,
the relationship between streamline curvature and
pressure, and lift. To explain lift it is not
necessary to go through all of the above steps
in the argument. Most students will be happy
with the streamline pattern around a lifting wing
(figure 1)—because it intuitively looks right—
and this should be exploited. A short, but
correct, explanation might start by discussing
the existence of transverse pressure gradients in
curved streamlines and applying this knowledge to
the flowfield around an aerofoil in a similar manner
to that shown in figure 9. This should explain
why pressures on the two sides of an aerofoil are
different. There is no need even to introduce
Bernoulli’s equation or discuss the rather subtle
significance of friction.
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Appendix
Pressure gradient along streamlines—Bernoulli’s
equation

v
Streamline

l

x
p p+dp

Surface area A
Fluid particle

In the above figure the cubic fluid particle
experiences a pressure p behind and a slightly
different pressure p + dp in front. This causes an
acceleration according to Newton’s second law:

F = ma = m
dv

dt
.

Here the resultant pressure force is F = −dp A,
which is negative because it points in the –x

direction. The mass of the fluid particle can be
determined from its volume and the fluid density
ρ: m = lAρ.

The magnitude of the pressure change
between front and back can be determined from
the pressure gradient in the streamwise direction
(dp/dx) and the size of the particle:

dp = l
dp

dx
.

Combining all of the above gives

−l
dp

dx
A = lAρ

dv

dt

which simplifies to

dp = −ρ
dv

dt
dx.

Noting that dx/dt = v, this can be rewritten as

dp = −ρv dv.

Now we can integrate between two points (1
and 2) along a streamline to relate the pressure

difference between these points to the velocity
difference: ∫ 2

1
dp = −

∫ 2

1
ρv dv

p2 − p1 = −
(

ρ
v2

2

2
− ρ

v2
1

2

)

which can be rearranged as

p1 +
ρ

2
v2

1 = p2 +
ρ

2
v2

2 .

Because points 1 and 2 are arbitrary locations
along the streamline, the above equation can
be used to connect any two locations along
a streamline—this is in essence Bernoulli’s
equation. Note that the streamline need not be
straight.

Pressure gradient across curved streamlines

v
Curved streamline

P
outside

P
inside

Pressure force
P

outside
> P

inside

h

Surface area A

The centripetal force is F = mv2/R and we
can define pinside = p and poutside = p + dp.
Similar to before we note that m = ρAh and
dp = h(dp/dn), where n is the coordinate in the
direction normal to the streamline (pointing away
from the centre of curvature).

Combining all of the above yields

F = A dp = Ah
dp

dn
= ρAh

v2

R

which can be simplified to

dp

dn
= ρ

v2

R

which expresses the pressure gradient across
streamlines in terms of the local radius of curvature
R and the flow velocity v. If a streamline is
straight, R → ∞ and dp/dn = 0. Therefore,
there is no pressure gradient across straight
streamlines.
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